China Standard China Precision Machining Parts Gearbox Reduction Hollow Rotating Platform Speed Reducer with Hot selling

Product Description

Product Description

 

Rotary speed reducer/slewing drive

Main fetures:

1.large speed ratio range

2.small volume,low weight ,saving space for mounting.

3.high efficiency,high mechanical strength and high quality aluminum alloy housing

4.long life service,large output torque,low noise and little vibration

5.low temperature rise,omnibearing installation ,easy to connect with other machinery.

6.high carry ability,elegant apperance.

7.CE standard,input power can be 0.06KW-15KW

8.stable transmission
 

Product Parameters

­

 

Detailed Photos

 

More Models

 

Packaging & Shipping

 

Company Profile

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Layout: Coaxial
Gear Shape: Bevel / Miter
Type: Planetary Gear Reducer
Material: Aluminium Alloy+Steel
Customization:
Available

|

Customized Request

miter gear

What is the impact of tooth profile on the efficiency of miter gears?

The tooth profile of miter gears plays a crucial role in determining their efficiency. Miter gears are a type of bevel gears that transmit rotational motion between intersecting shafts. The tooth profile refers to the shape and design of the teeth on the gear.

The efficiency of miter gears is influenced by several factors related to the tooth profile:

  1. Tooth Shape: The shape of the teeth can significantly affect the efficiency. Ideally, the tooth profile should have a smooth and gradual transition from one tooth to the next. This ensures a uniform distribution of load and minimizes the impact of meshing forces, resulting in higher efficiency.
  2. Tooth Size: The size of the teeth, including their length and width, can impact the efficiency of miter gears. Larger teeth generally provide better load-carrying capacity and reduce the risk of tooth failure. However, excessively large teeth can increase friction and reduce efficiency.
  3. Tooth Helix Angle: The helix angle of the teeth determines the spiral orientation of the gear. Miter gears with a higher helix angle tend to have smoother meshing action and lower noise levels. This can contribute to improved efficiency by reducing friction and minimizing energy losses.
  4. Tooth Contact Pattern: The contact pattern between the teeth of miter gears should be optimized for efficient power transmission. Proper tooth contact ensures uniform load distribution and minimizes localized wear. A well-designed tooth profile creates a desirable contact pattern, resulting in higher efficiency.

Therefore, when designing or selecting miter gears, careful consideration should be given to the tooth profile. Optimal tooth shape, size, helix angle, and contact pattern can significantly enhance the efficiency of miter gears, leading to improved overall performance and reduced energy losses.

miter gear

How do you calculate the gear ratio in a miter gear assembly?

The gear ratio in a miter gear assembly can be calculated by considering the number of teeth on the gears involved. Here’s a step-by-step explanation:

1. Determine the Number of Teeth:

Identify the number of teeth on both the driving gear (input gear) and the driven gear (output gear) in the miter gear assembly. The number of teeth can usually be found in the gear specifications or by physically counting the teeth.

2. Calculate the Gear Ratio:

To calculate the gear ratio, divide the number of teeth on the driven gear (output gear) by the number of teeth on the driving gear (input gear). The formula for calculating the gear ratio is:

Gear Ratio = Number of Teeth on Driven Gear / Number of Teeth on Driving Gear

3. Simplify the Ratio (Optional):

If the resulting gear ratio is a fraction, it can be simplified to its simplest form. Divide both the numerator and the denominator by their greatest common divisor to simplify the ratio.

4. Interpret the Gear Ratio:

The gear ratio indicates the relationship between the rotational speed or angular velocity of the driving gear and the driven gear. It represents how many times the driven gear rotates for each rotation of the driving gear. For example, a gear ratio of 2:1 means that the driven gear rotates twice for every rotation of the driving gear.

5. Consider the Significance:

The gear ratio has practical implications in determining the mechanical advantage and speed reduction/amplification in a miter gear assembly. A gear ratio greater than 1 indicates a speed reduction and increased torque, while a gear ratio less than 1 indicates a speed amplification and decreased torque.

In summary, the gear ratio in a miter gear assembly is calculated by dividing the number of teeth on the driven gear by the number of teeth on the driving gear. This ratio represents the relationship between the rotational speeds of the gears and provides insights into the mechanical advantage and speed transformation in the gear assembly.

miter gear

Can you explain the unique design of miter gear teeth?

The design of miter gear teeth is distinct and plays a crucial role in the functionality of these gears. Here’s a detailed explanation:

1. Tooth Shape:

Miter gear teeth have a straight shape, similar to spur gears. However, unlike spur gears where the teeth are parallel to the gear axis, miter gear teeth are cut at a right angle to the gear’s face. This allows the teeth to engage correctly when two miter gears mesh together at a 90-degree angle.

2. Equal Number of Teeth:

Miter gears have an equal number of teeth on both gears in a pair. This ensures proper meshing and smooth transmission of rotational motion between the gears. The equal number of teeth is essential for maintaining a constant speed ratio and preventing any slippage or irregular motion.

3. Conical Shape:

Another unique aspect of miter gear teeth is the conical shape of the gears themselves. The teeth are cut on the conical surface, which allows for proper engagement and transmission of motion between intersecting shafts. The conical shape ensures that the teeth mesh correctly, providing efficient power transmission at the desired angle.

4. Meshing at 90-Degree Angle:

Miter gears are designed to mesh at a 90-degree angle, allowing for power transmission between intersecting shafts. The teeth are specifically cut to facilitate this arrangement, ensuring that the gears engage smoothly and transmit rotational motion without any loss or disruption.

5. Tooth Contact and Load Distribution:

When miter gears mesh, the contact between the teeth occurs along a single line, known as the line of contact. This concentrated contact area enables effective load distribution and ensures that the gear teeth bear the transmitted torque evenly. Proper tooth contact is vital for minimizing wear and maintaining the longevity of the gears.

6. Lubrication and Noise Reduction:

The unique design of miter gear teeth can influence lubrication and noise levels. Adequate lubrication is essential to reduce friction and wear between the teeth during operation. Additionally, the straight tooth profile of miter gears tends to produce more noise compared to gears with helical or curved teeth. Proper lubrication and noise reduction measures are often employed to optimize the performance of miter gears.

In summary, the unique design of miter gear teeth includes their straight shape, equal number of teeth, conical shape of the gears, meshing at a 90-degree angle, tooth contact along a line, and considerations for lubrication and noise reduction. These design features ensure efficient power transmission, proper load distribution, and reliable operation in mechanical systems that utilize miter gears.

China Standard China Precision Machining Parts Gearbox Reduction Hollow Rotating Platform Speed Reducer with Hot sellingChina Standard China Precision Machining Parts Gearbox Reduction Hollow Rotating Platform Speed Reducer with Hot selling
editor by CX 2023-10-12